TridentDataModule¶
The default configuration (configs/datamodule/default.yaml
) for a tridentdatamodule
defines how training and evaluation datasets are instantiated.
Each split is a dictionary of TridentDataspec
.
_target_: trident.TridentDataModule
_recursive_: false
misc:
# reserved key for general TridentDataModule configuration
train:
# DictConfig of TridentDataspec
val:
# DictConfig of TridentDataspec
test:
# DictConfig of TridentDataspec
API¶
Methods¶
The below methods are user-facing TridentDataModule
methods. Since TridentDataModule
sub-classes the LightningDataModule, all methods, attributes, and hooks of the LightningDataModule are also available.
Important: You should not override the following methods:
train_dataloader
val_dataloader
test_dataloader
since the TridentDataModule
automatically returns the dataloaders for the TridentDataspec
enclosed in the configuration of the corresponding split.
setup¶
- TridentDataModule.setup(stage=None)[source]
- Return type:
None
get¶
- TridentDataModule.get(split, default=None)[source]
Retrieve the TridentDataspecs for the given split.
This method attempts to fetch a dataspec associated with a specific split. If the split is not found, it returns a default value.
- Parameters:
split (
Split
) – TheSplit
used to retrieve the dataspec.default (
Optional
[Any
]) – The default value to return if the split is not found.
- Return type:
Optional
[DictList
[TridentDataspec
]]- Returns:
The
DictList
ofTridentDataspec
for the given split or None.
train_dataloader¶
- TridentDataModule.train_dataloader()[source]
- Return type:
Union
[DataLoader
,CombinedLoader
]
val_dataloader¶
- TridentDataModule.val_dataloader()[source]
- Return type:
Union
[DataLoader
,CombinedLoader
]
test_dataloader¶
- TridentDataModule.test_dataloader()[source]
- Return type:
Union
[DataLoader
,CombinedLoader
]
predict_dataloader¶
- TridentDataModule.predict_dataloader()[source]
- Return type:
Union
[DataLoader
,CombinedLoader
]