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Making Sure We Are All On The Same Page!

Quick, Boring, But Important Preliminaries

P ZS-XLT: train XLM-R-{B,L}! on default English training sets by task, transfer
without annotations to target languages
P FS-XLT: take model from ZS-XLT and adapt to target-language with a few
(hundred) labelled target-language instances
P Hyperparameters: LR: 2e-5, batch size: 32, 10% linear warmup & decay
P Tasks:
P NLI: determine whether “hypothesis” is true, false, or undetermined given a
“premise”
P NER: sequence-labelling task to predict whether & what named entity a token
belongs to
P TyDiQA: extractive QA, question answered by a span in given paragraph

1 XLM-R-base unless stated otherwise



Walkthrough

1. Motivation: Relevant Work overstates actionable XLT performance

2. How Can We Strengthen XLT In Various Scenarios?
1. 'SLICER': Lever Task-Specific Properties for ZS-XLT in NER
2. 'Don’t Stop Fine-Tuning": Ground FS-XLT in Source-Language Data
3. 'Free Lunch’: More Robust {ZS,FS}-XLT With Simple Model Averaging
4. One For All & All For One: Cumulative Averaging For Ideal ZS-XLT

XLT: cross-lingual transfer
ZS-XLT: zero-shot XLT; only fine-tune XLM-R/mT5 on English training data & transfer to target languages
FS-XLT: few-shot XLT; like ZS-XLT, but further train on few (hundred) labelled target-language instances before transfer


https://aclanthology.org/2022.emnlp-main.740/
https://aclanthology.org/2022.emnlp-main.736/
https://aclanthology.org/2023.acl-long.314/

Background: Model Selection in Cross-Lingual Transfer

Validation Instances Checkpoints of MMT like XLM-R by Training Epochs
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P Models: finetune pretrained massively multilingual transformers like mT5 / XLM-R
P Data: train on sizable English task data & transfer zero- or few-shot to target languages
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Background: Model Selection in Cross-Lingual Transfer
TRG-DEV unrealistic in both Zero- and Few-Shot XLT

Fair

Problematic
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Don't Use English Dev: On the Zero-Shot Cross-Lingual Evaluation of Contextual Embeddings
Don't Stop Fine-Tuning: On Training Regimes for Few-Shot Cross-Lingual Transfer with Multilingual Language Models
Free Lunch: Robust Cross-Lingual Transfer via Model Checkpoint Averaging

P Opaque: experimental setups in

relevant work frequently
underspecified (mT5, XLM-R)

Inefficient: few hundred TRG-
DEV instances better used for
training!

Impractical: TRG-DEV does not

represent actionable XLT
performance

Inconsistent: TRG-DEV does
not consistently reduce std. dev
over LAST or S-DEV


https://aclanthology.org/2020.emnlp-main.40.pdf
https://aclanthology.org/2022.emnlp-main.736.pdf
https://aclanthology.org/2023.acl-long.314.pdf
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How do we optimize XLT without TRG-DEV?




Walkthrough

1. Motivation: Relevant Work overstates actionable XLT performance
2. How Can We Strengthen XLT In Various Scenarios?

1. 'SLICER’: Lever Task-Specific Properties for ZS-XLT in NER |
2. 'Don’t Stop Fine-Tuning": Ground FS-XLT in Source-Language Data

3. 'Free Lunch’: More Robust {ZS,FS}-XLT With Simple Model Averaging

4. One For All & All For One: Cumulative Averaging For Ideal ZS-XLT

XLT: cross-lingual transfer
ZS-XLT: zero-shot XLT; only fine-tune XLM-R/mT5 on English training data & transfer to target languages
FS-XLT: few-shot XLT; like ZS-XLT, but further train on few (hundred) labelled target-language instances before transfer
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https://aclanthology.org/2023.acl-long.314/

Decontextualization in NER Impairs ZS-XLT
Analysis of Pre- and Post-Fine-Tuning of XLM-R base on WikiANN-EN train

% of token attention to self

—— Before NER fine-tuning
—— After NER fine-tuning

‘."I.Illllll

>

% of token attention to self:
what attention probability does
token pay to itself at layer N

~~Decontextualization in Fine-

Tuning: tokens attend more to
themselves after fine-tuning!

(Monolingual) NER (over-)fits on
token-specific information
(casing, etc.):

“Obama” (New York City) is

always a Person (City)!



Solution: SLICER «f Token-Specific (Over-)fitting
Sliced Fine-Tuning For NER — Inference unchanged!

Token Output

Representation

€ R%

8>< into

% Rh slices

Binsum , _Slice Logits ___

> g><a|ong RY of token

and classifier
representations

Loss: Avg of token X
#slices losses

Token-specific features
don’t fit into slice!

Slices within tokens
cannot share features!
Inference: additive
ensemble over slices!



SLICER Improves ZS-XLT To Low-Resource Languages

WikiANN

MasakhaNER
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Setup:

» XLM-R base

P Train on WikiANN-EN
P Transfer after 10 epochs

Results robust for

(a) different hyperparameters

(b) different source language
(RU)

(c) TRG-DEV: improves
analogous to LAST at
slightly slimmer margins



Decontextualization in NER SLICED for Better ZS-XL'T
SLICER curbs Token Self-Attention & Favors Low-Rank Solutions

P SLICER forcefully decreases token dissimilarity by removing token-specific features

P Less token dissimilarity means higher NE-agnostic similarity to increase contextualization
(i.e., forced attention to context), which coincides with lower-rank token embeddings

Token-Self Attention
for varying slice lengths h
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SLICER Retrospective
One Of The “Quick” Ideas That Just Worked

P Idea Origination:

P Previous work demonstrated L2-regularization slightly but consistently benefits ZS-
XLT (with mBERT)

P What about arbitrarily large dropout (before classifier)?
» No Impact until 98%+ dropout on NER trials

(did not test other tasks at the time)

P SLICER ensures each dimension has to try to separate NER tokens

(students found single dimension in h = 1 separates one-vs-all, as expected)

» Does it work in practice?
P SLICER's benefits correlate well with how challenging transfer is!
WikiANN to MasakhaNER is (a) cross-lingual & (b) cross-domain



Walkthrough

1. Motivation: Relevant Work overstates actionable XLT performance

2. How Can We Strengthen XLT In Various Scenarios?
1. 'SLICER': Lever Task-Specific Properties for ZS-XLT in NER

2. 'Don’t Stop Fine-Tuning": Ground FS-XLT in Source-Language Data |

3. 'Free Lunch’: More Robust {ZS,FS}-XLT With Simple Model Averaging
4. One For All & All For One: Cumulative Averaging For Ideal ZS-XLT

XLT: cross-lingual transfer
ZS-XLT: zero-shot XLT; only fine-tune XLM-R/mT5 on English training data & transfer to target languages
FS-XLT: few-shot XLT; like ZS-XLT, but further train on few (hundred) labelled target-language instances before transfer
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https://aclanthology.org/2022.emnlp-main.736/
https://aclanthology.org/2023.acl-long.314/

Reliable Sequential Few-Shot Transfer Requires TRG-DEV
Three Major Problems With Sequential FS-XLT

Aggregated TRG-DEV (Grey Line)
vs. LAST FS-XLT Transfer (Colored Lines)

WikiANN [ %DtEV{ Test F;e'f- ‘t”/ 1. Large performance spread
& early stopping on target-
N 0 language validation data between TRG-DEV and
B true FS-XLT on average
101% [ 5 [ Running: test perf. at epoch 2. Sizable fluctuations
Shots - {1, 10, ..., 50} trails around true FS-XLT
i TRG-DEV by y-axis %
- 4 3. Best TRG-DEV 0@ @
B checkpoints are scattered
L Running checkpoints at epoch r r
10 trails “oracle” 4% in test (dOtS group target
perf. on avg. language by colour; each

dot ran on 10 different
Epochs shots)



Simple Solution: Ground FS-XLT in Source Language Data
Reusing Source-Language Training Instances Improves FS-XLT

Before: Sequential Few-Shot Transfer Now: Multi-Tasking on Source & Target Language

Target

XLM-R Language XLM-R Source Language  Target
oHYds

* N * Language
Source Language

- Source Language
? - Data ?
XLM-R — XLM-R
fine-tuned fine-tuned

Data



Source-Target Language Multi-Tasking Benefits FS-XLT

Consistent Performance Gains.. (1/2)
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Source-Target Language Multi-Tasking Benefits FS-XLT
..that we can seize upon reliably without TRG-DEV (2/2)
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P Performance: Multi-Tasking on par or better than TRG-DEV in True Transfer ("LAST")

P Consistency: Best Transfer consistently at final epoch



‘Don’t Stop Fine-Tuning’ Retrospective
Simplicity over Complexity (1/2)

P Idea Origination:
P Mix-Up works very well in computer vision and makes sense for FS-XLT
P No improvements from mix-up; S&T multi-tasking was ideally only ablation
but killed mix-up instead

P Does it work in practice? Yes, with some caveats

P Multi-tasking detrimental in cross-lingual, cross-domain transfer,
e.g. WikiANN & MasakhaNER

P Effects generally diminish in higher resource setups
P AND: Learning rate schedule with linear warm up and decay gets you very

close to S&T multi-tasking on some tasks: multi-tasking provides safety

P S&T multi-tasking helps regularizing (ZH translations as a source language

observed more benefits)



Walkthrough

1. Motivation: Relevant Work overstates actionable XLT performance

2. How Can We Strengthen XLT In Various Scenarios?
1. 'SLICER': Lever Task-Specific Properties for ZS-XLT in NER
2. 'Don't Stop Fine-Tuning”: Ground FS-XLT in Source-Language Data

3. 'Free Lunch’: More Robust {ZS,FS}-XLT With Simple Model Averaging
4. One For All & All For One: Cumulative Averaging For Ideal ZS-XLT

XLT: cross-lingual transfer
ZS-XLT: zero-shot XLT; only fine-tune XLM-R/mT5 on English training data & transfer to target languages
FS-XLT: few-shot XLT; like ZS-XLT, but further train on few (hundred) labelled target-language instances before transfer
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Model Averaging For Robust XLT
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Model Selection in Zero-Shot Cross-Lingual Transfer (1/2)
ZS-XLT on EN-trained XLM-R-L on 3x 21 pairs of (LR, batch size)

XNLI (15 target languages)

X-axis: Top 50% relative to best val.
LAST, ..., TRG-DEV-AVG shown

Y-axis: Avg. test perf. on all target
languages
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measured by source-language
validation performance

TRG-DEV-LS: select checkpoints for
each target-language individually on
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TRG-DEV-AVG: select single
checkpoint for all target languages on
avg. target-language validation
performance



Model Selection in Zero-Shot Cross-Lingual Transfer (1/2)
ZS-XLT on EN-trained XLM-R-L on 3x 21 pairs of (LR, batch size)

XNLI (15 target languages)

P X-axis: Top 50% relative to best val.
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P Hyperparameters matter (upward
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Model Selection in Zero-Shot Cross-Lingual Transfer (1/2)
ZS-XLT on EN-trained XLM-R-L on 3x 21 pairs of (LR, batch size)
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Model Selection in Zero-Shot Cross-Lingual Transfer (1/2)
ZS-XLT on EN-trained XLM-R-L on 3x 21 pairs of (LR, batch size)

XNLI (15 target languages)
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Model Selection in Zero-Shot Cross-Lingual Transfer (1/2)
ZS-XLT on EN-trained XLM-R-L on 3x 21 pairs of (LR, batch size)
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TRG-DEV-AVG strong in higher-

level semantic tasks; only small gains
via TRG-DEV-LS (again recall that
training on TRG-DEV always better)



Model Selection in Zero-Shot Cross-Lingual Transfer (2/2)
ZS-XLT on EN-trained XLM-R-L on 3x 21 pairs of (LR, batch size)
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WikiANN (24 target languages)
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Model Selection in Zero-Shot Cross-Lingual Transfer (2/2)
ZS-XLT on EN-trained XLM-R-L on 3x 21 pairs of (LR, batch size)
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AVG



Model Selection in Zero-Shot Cross-Lingual Transfer (2/2)
ZS-XLT on EN-trained XLM-R-L on 3x 21 pairs of (LR, batch size)

WikiANN (24 target languages)

65.0% 1 LR: 5e-6 to 3e-5 °
in 5e-6 steps o ©® °
64.0% 1 Batch size: 16, 32, 64 ° °
Random Seeds: 3 ® o o °
63.0% : o0 o ¢ ’—‘_._.._,._.___;
[ ] - - PY ° ° @ \\_ -,
620%1 c e % (o y o Oo.p,."gu
SIS B | l
61.0% 1 . Toe% " e l
e last ° ..' .0 °
60.0%1 © (S:F;C-DEV -, : .
(]
®
59.0% 1 e  TRG-DEV-LS ° o
e TRG-DEV-AVG
58.0% A )
70% 75% 80% 85% 90% 95% 100%

Normalized Validation Performance

P X-axis: Top 50% relative to best val.
LAST, ..., TRG-DEV-AVG shown

P Y-axis: Avg. test perf. on all target
languages

P Much less/worse correlation with
source-language validation perf.
(downward linear fit)

1 -’:;’\: CA even frequently beats TRG-DEV-

AVG

» TRG-DEV-LS successfully captures
language-specific variation for
strongest transfer performance



Can We ‘Fairly’ (without TRG-DEV) achieve ideal ZS-XLT?



Can We ‘Fairly’ (without TRG-DEV) achieve ideal ZS-XLT?

Yes! In Surprisingly Naive Manner



Model Selection vs. Cumulative Averaging for ZS-XLT
XLM-R-Large on a broad grid of hyperparameters

P Again: 61 runs over large task-agnostic grid of 21 pairs of learning rates and batch sizes, each for 3 seeds

» Now: Cumulatively sample 1,..., 10 runs with disjoint tuples of learning rate and batch size (10x) and

Initial Training Experimental Setup
Tasks " 3x Batch Size  7x LR \)I\f_ Sample 10 disjoint hyperparameters R
( N N ((5es )0 Model 1 I
NLI ! 16 Lo !
—__J| | | Model 2 )

—— _ 1
= (= I
TyDiQA|| 1 32 ! g —— ]:
— J | . odel 10 )
NER | 64 .. : f:-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-"
|

\ ) \ \8 )) \l 3e-5 /I I ! Pick the best individual model (on S-DEV) |
ST - 1 or cumulatively average all 1, ... r models?



Model Selection vs. Cumulative Averaging for ZS-XLT
XLM-R-Large on a broad grid of hyperparameters

P Again: 61 runs over large task-agnostic grid of 21 pairs of learning rates and batch sizes, each for 3 seeds
P Now Cumulatively sample 1,..., 10 runs with disjoint tuples of learning rate and batch size (10x) and

== -| P' Max. SRC-DEV: pick best individual model on SRC-DEV for model variant LAST, SRC-DEV, CA

: P Cumulatively average all available LAST, SRC-DEV, CA model variants without SRC-DEV

e e e r——r———————————— - ———mm e —— i — === — =

1 NLI JI TyDiQA-GoldP 1 NER

I Max. SRC-DEV :Cumulative Averagjng: Max. SRC-DEV :Cumulalive Averaging!  Max. SRC-DEV :Cumulalive Averaging
1

LAST S-DEV  CA 1LAST S-DEV CA LAST S-DEV  CA | LAST S-DEV CA LAST S$-DEV CA | LAST S-DEV  CA
76.50.6 76.50.8 T7.30.4 ‘76.50,6 T6.50.8 77.30.4]71.90.4 71.90.7 73.61.9,71.90.4 T1.90.7 73.61 910.85 7 41.15, 44‘62‘1i40.82‘7 41.139 44.62

w2

T7.20.3 T7.50.4 77.60_2,77.60_3 T7.8p.4 T8.00.2{71.90.6 T1.60.6 T3.32.0573.41.2 73.31.1 72.92.5]39.32.1 39.32.1 43.51.1143.22.2 43.22.2 45.61.5
T7.20.3 T7.50.4 T7.60.2077.80.3 T7.90.4 78.10.2)72. 105 T1.80.s T4.11.0074.10.7 T4d.20.7 73.81.2139.31.2 39.51.7 44.0,.1145.01 7 45.1y 5 47.31.3
T7.20.4 T7.50.4 77-511.2:77.70.3 77.90.4 T8.10.3|72.50.5 72.00.0 73.90.6 74505 74.10.4 74.10.0140.22.0 40.82.5 44.5, 5'45.01 7 45.3,.5 47.21.4
77.30.377.60.3 77.50.2y77.90.2 78.00.2 78.10.1{72.60.8 72.00.9 73.80.5{T4.T0.774.40.6 74.20.5,40.32.0 41.22.3 43.91 9§45.31 7 45.51.7 47.51.4
T7.30.3 T7.60.1 77.50_2:”7.9()_1 T8.0p.2 T8.10.1|72.60.8 72.00.0 74.20.5)74.To.7 Td.40.5 74.20.7140.32.0 41.22.3 43.9; 0‘45.71_4 45.91.4 47.91.2
T7.30.3 T7.60.1 77-511.2:77-9(1.2 78.1p.2 78.20.2172.30.0 71.T0.7 T4.30.5,74.60.7 T4.30.6 74.20.5140.02.1 40.62.3 44-12‘ul4ﬁ-01.3 46.11.3 48.11.
T7.30.3 T7.60.2 TT.50.2 F8.00373.20_173.3n,3.7'2.ln_g T1.70.7 74.20.5¢74.60.7 T4.30.5 74.30. 5 40.02.1 40.62.3 44.61.7146.01.1 46.1;.2 48.21 ¢
77.40.2 T7.602 T7.60.2178.00.1 78.10.1 78.30.272.01.1 71.70.7 74.20.5174.60.5 T4d.40.4 T4.20.4]39.62.5 39.92.4 44.3, 5146.00.6 46.10.7 48.30.7
T7.30.2 T7.60.2 T7.60.2 78 0o.1 78.20.1 T8.30.1 72 011 71707 74.20.5174.60.6 T4.40.4 T4.20.6139.62.53 39.92.4 44.4, 7‘46 10.546.29648.40.5

w00 =1 O U1 e W2

—
(=N




Model Selection vs. Cumulative Averaging for ZS-XLT
XLM-R-Large on a broad grid of hyperparameters

P Again: 61 runs over large task-agnostic grid of 21 pairs of learning rates and batch sizes, each for 3 seeds
» Now: Cumulatively sample 1,..., 10 runs with disjoint tuples of learning rate and batch size (10x) and
|?— Max. SRC-DEV: pick best individual model on SRC-DEV for model variant LAST, SRC-DEV, CA

T '|_>_: Cumulatively average all available LAST, SRC-DEV, CA model variants without SRC-DEV

NLI 1

TyDiQA-GoldP

NER

Max. SRC-DEV  !Cumulative Averagjng: Max. SRC-DEV ! Cumulative Averaging: Max. SRC-DEV :Cumulalive Averaging:
I 1

LAST S-DEV ~ CA | LAST S-DEV CA

LAST S-DEV  CA | LAST S-DEV CA

LAST S$-DEV  CA | LAST S-DEV  CA |

T76.50.6 76.50.8 77.30.4'76.50.5 76.50.8 T7.30.4
77.20.3 T7.50.4 77.60_2:77.60_3 77.80.4 78.00.2
T7.20.3 T7.50.4 77.60.2177.80.3 77.90.4 78.1p.2
77.20.4 T7.50.4 T7.50.2\77.T0.3 T7-90.4 78.10.3
77.30.577.60.3 77.50,2'77.9(),2 78.0p.2 T8.10.1
T7.30.3 T7.60.1 77.50.2177.90.1 78.00.2 78.1p.1
77.30.3 77.60.1 77.50.2/77.90.2 78.10.2 78.20.2
T7.30.3 T7.60.2 T7.50.2
77.40.2 T7.60.2 T7.60.2

=R BT - I

78.00.1 78.1p.1 78.30.2

—
[e=]

8.00.278.20.178.30.2|

71.99.4 T1.90.7 73‘(‘}1_9(71.90.4 T1.90.7 73.61.9
71.90.6 T1.60.6 73A32.n:73.4|.2 T3.31.1 72925
T2.10.s T1.80.8 T4.11.0174.10.7 T4.20.7 T3.81.2
72.50.8 72.00.6 73.90.6 | 74.50.6 74.10.4 T4.10.0
72.60.8 72.00.9 73,80_3‘74.79_774.40_5 74.20.8
72.60.8 72.00.9 74.20.5174.To.7 T4.40.5 T4.20.7
72.30.0 T1.70.7 74.30.5 T4.60.7 T4.30.6 T4.20.5
72109 T1.70.7 74,20_5’74.&],7 T4.30.5 74.30.5
72.011 T1.70.7 7’1A2n_5i74.6u_5 Td.dp.a T4.20.4

40,85 7 41,151 44.63 1140.8, 7 4115 44,65,
39321 39821 43,511/ 43.22 43.22, 45.615)
39.31.2 39.51.7 44.0,.1145.01.7 45.1, 5 47.31 3!
40.22.0 40.82.2 44-51‘5::45-01.7 45.31.5 47.21.4!
40.32.041.22.3 43.91“3':45.31_7 45.51.7 47.51.4)
40.32.0 41.22.3 43.91 0145.T1.4 45.91.4 47.912)
40.02.1 40.62.3 44-12‘0:;46-01.3 46.11.3 43-11‘1:
40.02.1 40.62.3 44.6, 7|\46.U|__|_ 46.11.2 48.21 )
39.62.3 39.92.4 44.31 a|:46.00_e 46.1p.7 48.30.7!

39.62.5 39.92.4 44.41‘7'56_10_546.20,548.40!}




Model Selection vs. Cumulative Averaging for ZS-XLT
XLM-R-Large on a broad grid of hyperparameters

P Again: 61 runs over large task-agnostic grid of 21 pairs of learning rates and batch sizes, each for 3 seeds
» Now: Cumulatively sample 1,..., 10 runs with disjoint tuples of learning rate and batch size (10x) and

> (Green denotes on par (light) or better (strong) performance than best max. SRC-DEV (L, S-DEV, CA)

P Cumulative averaging typically achieves better performance from first averaged-in run (r = 2) at lower o

NLI TyDiQA-GoldP NER
Max. SRC-DEV Cumulative Averaging Max. SRC-DEV Cumulative Averaging Max. SRC-DEV Cumulative Averaging
LAST S-DEV  CA ' LAST S-DEV CA LAST S-DEV CA * LAST S-DEV CA LAST S-DEV ~ CA ' LAST S-DEV

CA

=R BT - I

—
o]

T76.50.6 76.50.8 77.39.4:76.59.5 76.50.8 T7.30.4
T7.20.3 T7.50.4 77.60_2:77.60_3 77.8p.4 T8.00.2
T7.20.3 T7.50.4 T7.60.2177.80.3 77.90.4 7T8.10.2
T7.20.4 T7.50.4 77-511.2:77-70.3 77.90.4 7T8.10.3
77.30.3T7.60.3 77.50.2'77.90.2 78.0p.2 T8.10.1
T7.30.3 T7.60.1 77.50.2:77.90_1 78.0p.2 T8.10.1
T7.30.3 T7.60.1 77-511.2:77-91\.2 78.10.2 78.20.2
T7.30.3 T7.60.2 77.50.278.00.278.20.1 78.30.2|
T7.40.2 77.60.2 77.59_2:78.00_1 78.1p.1 T8.30.2
T7.30.2 T7.60.2 77.60.2178.00.1 78.20.1 7T8.30.1

T1.99.4 T1.90.7 73‘(31_9;71.9@_4 T1.99.7 73.61.9
71.90.6 T1.60.6 73.32.0:?3.r1|_2 T3.31.1 72925
T2.1p.8 T1.80.8 7T4.11.0174. 107 T4.20.7 73.8:2
72.50.8 72.00.0 73‘90.6:74—50.6 T4.10.4 Td.10.9
72.60.8 72.00.9 7T3.80.sT4.To7T4.40.6 7T4.20.5
72.60.8 72.00.0 74.20.5,74.To.7 T4.40.5 T4.20.7
72.30.0 T1.70.7 74.35_3:74-50.7 T4.30.6 74.20.5
72109 TL.70.7 74.20.5174.60.7 T4.30.5 T4.30.5
72011 TL.70.7 T4-205,74.60.5 Tdd0.a 74204
72.01.1 T1.70.7 T4.20.5174.60.6 T4d.40.4 74206

40.82 741,154 44‘62‘1;40.82‘7 41.15 44.62,4
39.32.1 39.32.1 43.5; 1:'13.22 2 43.22.2 45.61 5
39.31.2 39.51.7 44.01.1145.01.7 45.11 8 47.31.3
40.22.0 40.82.2 44.51.545.00.7 45.31.5 47-21.4
40.32.041.22. 3 43.91 9145.31.7 45.51.7 47.51.4
40.32.0 41.22.3 43.9, «;145.71_4 45.91.4 47912
40.02.1 40.62.3 44-12‘0146-01.3 46.11.3 48.11.
40.02.1 40.62.3 44.61.7146.01.1 46.11.2 48.2; o
39.62.3 39.92.4 44.31 3146.00_3 46.1p.7 48.30.7
39.62.5 39.92.4 44,41 746.10.546.20.648.40.5




Cumulative Avg. aligns with ‘ideal’ (TRG-DEV) ZS-XLT

P Repeat prior analysis now with
TRG-DEV and SOUP

NLI TyDiQA-GoldP NER P SOUP averages top-k SRC-
DEV checkpoints),
but plateaus like max. SRC-

Max. DEV Cum. Avg. Max. Dev Cum. Avg. Max. DEV Cum. Avg.

SRC TRG SRC TRG, SRC TRG | DEV (albeit at higher levels)
7 |DEV DEV'! CA SOUP DEV DEV' CA SOUP|DEV DEV'! CA SOUP
1{77.3177.0177.3176.8 {71.9172.81 73.6 173.7 {41.1146.51 44.6 142.3 1
3| 77.5177.71 78,1 177.6 | TL81 T3.51 73.8 1 73.8 {39.5140.21 47,3 142.1
5|77.6)77.0175.1 \77.6172.00 7311742 |74.3)41.2) 107117 5 |42.8]
7776 7220782 1778 717 7371712 173.9 140,61 49.9, 18,1 1428
10 TT.G:TH-HTN.:;:W.? 71.7:7::’..n:1 1.2 :73.8 39.9: 19.9 48 1:42.8:




Cumulative Avg. aligns with ‘ideal’ (TRG-DEV) ZS-XLT

NLI

TyDiQA-GoldP

NER

Max. DEV Cum. Avg. Max. Dev Cum. Avg. Max. DEV Cum. Avg.

SRC TRG
DEV DEV' CA SOUP

SRC TRG |
DEV DEV' CA SOUP

SRC TRG |
DEV DEV' CA SOUP

S

2 W o= |3

77.317T.0177.3176.8
T7.5077.7178.11 T7.6
77.6177.9\78.1 ) 77.0
7761782782177 8
7760178.4)78.31 777

71.9172.8173.61 73.7
71.8173.5173.81 73.8
72.0173.4|74.2)74.3
717t 3.7 742! 7300
71 .:73.9I74.2: 73.8

11.1146.5144.61 42.3
30.5149.2147.31 12,1
11.2149.7147.5)42.8
0.0149.9/48.1) 12
:t""’:49.9|48.4: 12.8

P Repeat prior analysis now with
TRG-DEV and SOUP

averages top-k SRC-
DEV checkpoints),
but plateaus like max.
(albeit at higher levels)

Key: naively cumulative
averaging without monitoring
SRC-DEV

Cumulative Averaging
1. irons out bad runs
2. ingests strong runs
(cf. TRG-DEV)

3. does not plateau in sub-
optimal SRC-DEV




‘Free Lunch’ and ‘One For All" Retrospective
Simplicity over Complexity (2/2)

P Idea Origination:
» Complex ideas around multi-lingual FS-XLT itched me the wrong way
(gradient vaccination)
P ‘Model soups' (complex variant of run averaging) worked well in vision, and, turns out,
checkpoint avg. very common for machine translation
» Run averaging did not work in ‘model soups':
heads were aligned for CV (same induction) but not for text classification

» Does it work in practice?
P Checkpoint averaging effects diminish for higher-resource FS-XLT setups (transfer
becomes more ‘monolingual’)
P translate-train would arguably be interesting to see
» (Cumulative) Run Averaging Defensive Strategy That Gives You — with very high
likelihood — best XLT performance (at same inference speed)



Universal Take-Aways
Irrespective of Cross-Lingual Transfer Evaluation

P Fairness in evaluation critically important for fundamental progress

P Simple methods can work just as well as more involved approaches

P Model ‘averaging’ or ‘ensembles’ in various forms (RA, MoE) are very strong
baselines if you are already tuning hyperparameters

P We should strive for more transparent and realistic experimental setups
P Modern tooling (wandb) simplifies reporting results under various considerations



Thank You For Your Attention!



Further Results



Benefits Task-Dependent (-Agnostic) for ZS-XLT (FS-XLT)

420 é:sftg Final I Zero-Shot P> Weight Averaging
eckpoint__ Cross-Lingual Transfer Consistently On Par Or
Better Than Baselines

Magnitude of Benefits
Depend on No. of Shots

Multilingual 50-Shots and Task

oss-Lingual Transfer P Run-Averaging
Curriculum Outperforms
Hyperparameter Tuning

T
v

—Cr

. Model Selection: e, .
i SRC- —
- Dev i cAllll RA-Last = RA—CAE




Model Averaging Makes ZS-XLT More Robust

(A) To Distribution Shifts (B) To Varying Hyperparameters

Abs. A to Final
Checkpoint

+2.5
+2.0
+1.5
+1.0
+0.5

ZS-XLT with Multilingual Models
trained on EN + 9L a 100 shots

- Tagkg o e Model Selection =
-NLI- NER 5 CA Il RA-Last —RACA

LR Hile5 MH2e5 MM3e5 ¥ Std. Dev

Bl SRC-DEV lm CA
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