Robust and Scalable Cross-Lingual Transfer For Natural Language Understanding

Fabian David Schmidt

fdschmidt93.github.io

27.09.2023

Fabian David Schmidt

- ▶ B.Sc. In Finance from Frankfurt School of Finance & Management
- ▶ Internships in Investment Banking & Private Equity (e.g., Goldman Sachs)
- ▶ M.Sc. In Data Science from University of Mannheim
- ▶ ML Engineering Internship at Car InsurTech Start-Up (Friday Versicherung)
- ▶ Third-year PhD in Cross-Lingual Representation Learning
- Open Source Enthusiast around Neovim ecosystem (telescope.nvim co-maintainer)

Making Sure We Are All On The Same Page! Quick, Boring, But Important Preliminaries

- **ZS-XLT:** train XLM-R-{B,L}¹ on default English training sets by task, transfer without annotations to target languages
- ► FS-XLT: take model from ZS-XLT and adapt to target-language with a few (hundred) labelled target-language instances
- ▶ Hyperparameters: LR: 2e-5, batch size: 32, 10% linear warmup & decay
- ► Tasks:
 - ▶ NLI: determine whether "hypothesis" is true, false, or undetermined given a "premise"
 - ▶ NER: sequence-labelling task to predict whether & what named entity a token belongs to
 - ▶ TyDiQA: extractive QA, question answered by a span in given paragraph

Walkthrough

- 1. Motivation: Relevant Work overstates actionable XLT performance
- 2. How Can We Strengthen XLT In Various Scenarios?
 - 1. 'SLICER': Lever Task-Specific Properties for ZS-XLT in NER
 - 2. 'Don't Stop Fine-Tuning': Ground FS-XLT in Source-Language Data
 - 3. 'Free Lunch': More Robust $\{ZS,FS\}$ -XLT With Simple Model Averaging
 - 4. One For All & All For One: Cumulative Averaging For Ideal ZS-XLT

XLT: cross-lingual transfer

ZS-XLT: zero-shot XLT; only fine-tune XLM-R/mT5 on English training data & transfer to target languages

 $FS-XLT: \ \text{few-shot} \ XLT; \ \text{like} \ ZS-XLT, \ \text{but} \ \text{further} \ \text{train} \ \text{on} \ \text{few} \ \text{(hundred)} \ \text{labelled} \ \text{target-language} \ \text{instances} \ \text{before} \ \text{transfer}$

- ▶ Models: finetune pretrained massively multilingual transformers like mT5 / XLM-R
- ▶ Data: train on sizable English task data & transfer zero- or few-shot to target languages

LAST simply picks the final checkpoint θ_e for testing

SRC-DEV

θ₄ maximizes sourcelanguage validation
performance and is used
for testing

 θ_3 maximises avg. target-language validation performance (used by mT5, VECO)

LAST simply picks the final checkpoint θ_e for testing

 $heta_4$ maximizes sourcelanguage validation performance and is used for testing

 θ_3 maximises avg. target-language validation performance (used by mT5, VECO)

LAST simply picks the final checkpoint θ_e for testing

 θ_4 maximizes sourcelanguage validation performance and is used for testing

 θ_3 maximises avg. target-language validation performance (used by mT5, VECO)

Background: Model Selection in Cross-Lingual Transfer TRG-DEV unrealistic in both Zero- and Few-Shot XLT

Fair

Problematic

LAST

LAST simply picks the final checkpoint θ_e for testing

TRG-DEV-AVG θ_3 maximises avg. target-language validation performance (used by mT5, VECO)

 θ_4 maximizes sourcelanguage validation performance and is used for testing - TRG-DEV-LS - Use target-language specific θ , denominates upper ZS-XLT bound (we use for analysis)

- Opaque: experimental setups in relevant work frequently underspecified (mT5, XLM-R)
- ► Inefficient: few hundred TRG-DEV instances better used for training!
- ▶ Impractical: TRG-DEV does not represent actionable XLT performance
- ► Inconsistent: TRG-DEV does not consistently reduce std. dev over LAST or S-DEV

Background: Model Selection in Cross-Lingual Transfer TRG-DEV unrealistic in both Zero- and Few-Shot XLT

Fair

Problematic

LAST

LAST simply picks the final checkpoint θ_e for testing

 ${
m TRG-DEV-AVG} \ heta_3$ maximises avg. target-language validation performance (used by mT5, VECO)

SRC-DEV

 θ_4 maximizes sourcelanguage validation performance and is used for testing - TRG-DEV-LS - Use target-language specific θ , denominates upper ZS-XLT bound (we use for analysis)

- Opaque: experimental setups in relevant work frequently underspecified (mT5, XLM-R)
- ► Inefficient: few hundred TRG-DEV instances better used for training!
- Impractical: TRG-DEV does not represent actionable XLT performance
- ► Inconsistent: TRG-DEV does not consistently reduce std. dev over LAST or S-DEV

How do we optimize XLT without TRG-DEV?

Walkthrough

- 1. Motivation: Relevant Work overstates actionable XLT performance
- 2. How Can We Strengthen XLT In Various Scenarios?
 - 1. 'SLICER': Lever Task-Specific Properties for ZS-XLT in NER
 - 2. 'Don't Stop Fine-Tuning': Ground FS-XLT in Source-Language Data
 - 3. 'Free Lunch': More Robust $\{ZS,FS\}$ -XLT With Simple Model Averaging
 - 4. One For All & All For One: Cumulative Averaging For Ideal ZS-XLT

XLT: cross-lingual transfer

ZS-XLT: zero-shot XLT; only fine-tune XLM-R/mT5 on English training data & transfer to target languages

 $FS-XLT: \ \text{few-shot} \ XLT; \ \text{like} \ ZS-XLT, \ \text{but} \ \text{further} \ \text{train} \ \text{on} \ \text{few} \ \left(\text{hundred}\right) \ \text{labelled} \ \text{target-language} \ \text{instances} \ \text{before} \ \text{transfer}$

Decontextualization in NER Impairs ZS-XLT

Analysis of Pre- and Post-Fine-Tuning of XLM-R base on WikiANN-EN train

Solution: SLICER Token-Specific (Over-)fitting Sliced Fine-Tuning For NER – Inference unchanged!

- ➤ along R^d of token and classifier representations
- Loss: Avg of token × #slices losses
- ► Token-specific features don't fit into slice!
- Slices within tokens cannot share features!
- Inference: additive ensemble over slices!

SLICER Improves ZS-XLT To Low-Resource Languages

Setup:

- XLM-R base
- Train on WikiANN-EN
- ► Transfer after 10 epochs
- Results robust for
 - (a) different hyperparameters
 - (b) different source language (RU)
 - (c) TRG-DEV: improves analogous to LAST at slightly slimmer margins

Decontextualization in NER SLICED for Better ZS-XLT SLICER curbs Token Self-Attention & Favors Low-Rank Solutions

- ▶ SLICER forcefully decreases token dissimilarity by removing token-specific features
- Less token dissimilarity means higher NE-agnostic similarity to increase contextualization (i.e., forced attention to context), which coincides with lower-rank token embeddings

SVD on Stacked Token Representations of WikiANN-FN-test

SLICER Retrospective One Of The "Quick" Ideas That Just Worked

Idea Origination:

- ▶ Previous work demonstrated L2-regularization slightly but consistently benefits ZS-XLT (with mBERT)
- ▶ What about arbitrarily large dropout (before classifier)?
 - No Impact until 98%+ dropout on NER trials (did not test other tasks at the time)
- SLICER ensures each dimension has to try to separate NER tokens (students found single dimension in h=1 separates one-vs-all, as expected)

Does it work in practice?

► SLICER's benefits correlate well with how challenging transfer is! WikiANN to MasakhaNER is (a) cross-lingual & (b) cross-domain

Walkthrough

- 1. Motivation: Relevant Work overstates actionable XLT performance
- 2. How Can We Strengthen XLT In Various Scenarios?
 - 1. 'SLICER': Lever Task-Specific Properties for ZS-XLT in NER
 - 2. 'Don't Stop Fine-Tuning': Ground FS-XLT in Source-Language Data
 - 3. 'Free Lunch': More Robust $\{ZS,FS\}$ -XLT With Simple Model Averaging
 - 4. One For All & All For One: Cumulative Averaging For Ideal ZS-XLT

XLT: cross-lingual transfer

ZS-XLT: zero-shot XLT; only fine-tune XLM-R/mT5 on English training data & transfer to target languages

 $FS-XLT: \ \text{few-shot} \ XLT; \ \text{like} \ ZS-XLT, \ \text{but} \ \text{further} \ \text{train} \ \text{on} \ \text{few} \ \text{(hundred)} \ \text{labelled} \ \text{target-language} \ \text{instances} \ \text{before} \ \text{transfer}$

Reliable Sequential Few-Shot Transfer Requires $\mathrm{TRG\text{-}DEV}$ Three Major Problems With Sequential FS-XLT

3. Best TRG-DEV ••• checkpoints are scattered (dots group target language by colour; each dot ran on 10 different shots)

Simple Solution: Ground FS-XLT in Source Language Data Reusing Source-Language Training Instances Improves FS-XLT

Before: Sequential Few-Shot Transfer

Now: Multi-Tasking on Source & Target Language

Source-Target Language Multi-Tasking Benefits FS-XLT Consistent Performance Gains.. (1/2)

- ➤ **Setup:** True Few-Shot Transfer
 - w/o target language validation data
 - fixed hyperparameters
- Multi-Tasking outperforms with ↑steps
 - Intermediate Multilingual Fine-Tuning (EN → MULTI → TRG-LANG) improves computational efficiency & performance

Source-Target Language Multi-Tasking Benefits $\mathrm{FS}\text{-}\mathrm{XLT}$...that we can seize upon reliably without $\mathrm{TRG}\text{-}\mathrm{DEV}$ (2/2)

- ▶ **Performance:** Multi-Tasking on par or better than TRG-DEV in True Transfer ("LAST")
- ▶ Consistency: Best Transfer consistently at final epoch

'Don't Stop Fine-Tuning' Retrospective Simplicity over Complexity (1/2)

- **▶** Idea Origination:
 - ▶ Mix-Up works very well in computer vision and makes sense for FS-XLT
 - ▶ No improvements from mix-up; S&T multi-tasking was ideally only ablation but killed mix-up instead
- **Does it work in practice?** Yes, with some caveats
 - ► Multi-tasking detrimental in cross-lingual, cross-domain transfer, e.g. WikiANN & MasakhaNER
 - ▶ Effects generally diminish in higher resource setups
 - ▶ AND: Learning rate schedule with linear warm up and decay gets you very close to S&T multi-tasking on <u>some</u> tasks: multi-tasking provides safety
 - ➤ S&T multi-tasking helps regularizing (ZH translations as a source language observed more benefits)

Walkthrough

- 1. Motivation: Relevant Work overstates actionable XLT performance
- 2. How Can We Strengthen XLT In Various Scenarios?
 - 1. 'SLICER': Lever Task-Specific Properties for ZS-XLT in NER
 - 2. 'Don't Stop Fine-Tuning': Ground FS-XLT in Source-Language Data
 - 3. 'Free Lunch': More Robust $\{ZS,FS\}$ -XLT With Simple Model Averaging
 - 4. One For All & All For One: Cumulative Averaging For Ideal ZS-XLT

XLT: cross-lingual transfer

ZS-XLT: zero-shot XLT; only fine-tune XLM-R/mT5 on English training data & transfer to target languages

 $FS-XLT: \ \text{few-shot} \ XLT; \ \text{like} \ ZS-XLT, \ \text{but} \ \text{further} \ \text{train} \ \text{on} \ \text{few} \ \text{(hundred)} \ \text{labelled} \ \text{target-language} \ \text{instances} \ \text{before} \ \text{transfer}$

Model Averaging For Robust XLT

Single Run: Checkpoint Averaging (CA)

Multiple Runs: Aligned Heads Enable Ensembling via 'Run Averaging (RA)'

- X-axis: Top 50% relative to best val. LAST, ..., TRG-DEV-AVG shown
- ➤ **Y-axis:** Avg. test perf. on all target languages
- LAST, SRC-DEV, and CA are measured by source-language validation performance
- ➤ TRG-DEV-LS: select checkpoints for each target-language individually on its dev. set
 - TRG-DEV-AVG: select single checkpoint for all target languages on avg. target-language validation performance

- X-axis: Top 50% relative to best val. LAST, ..., TRG-DEV-AVG shown
- ➤ Y-axis: Avg. test perf. on all target languages
- Hyperparameters matter (upward linear fits)

- X-axis: Top 50% relative to best val. LAST, ..., TRG-DEV-AVG shown
- ➤ Y-axis: Avg. test perf. on all target languages
- Hyperparameters matter (upward linear fits)
- CA much stronger at less- than-ideal hyperparameters

- X-axis: Top 50% relative to best val. LAST, ..., TRG-DEV-AVG shown
- ➤ Y-axis: Avg. test perf. on all target languages
- Hyperparameters matter (upward linear fits)
- CA much stronger at less- than-ideal hyperparameters
- SRC-DEV: 1 in 63 runs reproduces original perf. (only 3rd in val. perf.!)
 - TRG-DEV-AVG strong in higherlevel semantic tasks; only small gains via TRG-DEV-LS (again recall that training on TRG-DEV always better)

- X-axis: Top 50% relative to best val. LAST, ..., TRG-DEV-AVG shown
- ➤ Y-axis: Avg. test perf. on all target languages
- Much less/worse correlation with source-language validation perf. (downward linear fit)

- **X-axis:** Top 50% relative to best val. LAST, ..., TRG-DEV-AVG shown
- ➤ **Y-axis:** Avg. test perf. on all target languages
- Much less/worse correlation with source-language validation perf. (downward linear fit)
- CA even frequently beats TRG-DEV-AVG

- X-axis: Top 50% relative to best val. LAST, ..., TRG-DEV-AVG shown
- ➤ **Y-axis:** Avg. test perf. on all target languages
- Much less/worse correlation with source-language validation perf. (downward linear fit)
- CA even frequently beats TRG-DEV-AVG
- ► TRG-DEV-LS successfully captures language-specific variation for strongest transfer performance

Can We 'Fairly' (without TRG-DEV) achieve ideal ZS-XLT?

Yes! In Surprisingly Naïve Manner

- ▶ **Again:** 61 runs over large task-agnostic grid of 21 pairs of learning rates and batch sizes, each for 3 seeds
- Now: Cumulatively sample 1,..., 10 runs with disjoint tuples of learning rate and batch size ($10\times$) and

- ▶ Again: 61 runs over large task-agnostic grid of 21 pairs of learning rates and batch sizes, each for 3 seeds
- Now: Cumulatively sample 1,..., 10 runs with disjoint tuples of learning rate and batch size (10×) and
- Max. SRC-DEV: pick best individual model on SRC-DEV for model variant LAST, SRC-DEV, CA Cumulatively average all available LAST, SRC-DEV, CA model variants without SRC-DEV

	l NLI							TyDiQA-GoldP						NER					
- 1	Ma	Max. SRC-DEV			Cumulative Averaging			Max. SRC-DEV			Cumulative Averaging			Max. SRC-DEV			Cumulative Averagin		
r	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	
1	$76.5_{0.6}$	$76.5_{0.8}$	$77.3_{0.4}$	$76.5_{0.6}$	$76.5_{0.8}$	$77.3_{0.4}$	$71.9_{0.4}$	$71.9_{0.7}$	$73.6_{1.9}$	$71.9_{0.4}$	$71.9_{0.7}$	$73.6_{1.9}$	$40.8_{\scriptstyle 2.7}$	$41.1_{3.1}$	$44.6_{2.1}$	$40.8_{2.7}$	$41.1_{3.0}$	$44.6_{2.1}$	
2	$77.2_{0.3}$	$77.5_{0.4}$	$77.6_{0.2}$	$77.6_{0.3}$	$77.8_{0.4}$	$78.0_{0.2}$	$71.9_{0.6}$	$71.6_{0.6}$	$73.3_{2.0}$	$73.4_{1.2}$	$73.3_{1.1}$	$72.9_{2.8}$	$39.3_{2.1}$	$39.3_{2.1}$	$43.5_{1.1}$	$43.2_{2.2}$	$43.2_{2.2}$	$45.6_{1.5}$	
3	$77.2_{0.3}$	$77.5_{0.4}$	$77.6_{0.2}$	$177.8_{0.3}$	$77.9_{0.4}$	$78.1_{0.2}$	$72.1_{0.8}$	$71.8_{0.8}$	$74.1_{1.0}$	$74.1_{0.7}$	$74.2_{0.7}$	$73.8_{1.2}$	$39.3_{1.2}$	$39.5_{1.7}$	$44.0_{1.1}$	$45.0_{1.7}$	$45.1_{1.8}$	$47.3_{1.3}$	
4	$77.2_{0.4}$	$77.5_{0.4}$	$77.5_{0.2}$	$77.7_{0.3}$	$77.9_{0.4}$	$78.1_{0.3}$	$72.5_{0.8}$	$72.0_{0.9}$	$73.9_{0.6}$	$74.5_{0.6}$	$74.1_{0.4}$	$74.1_{0.9}$	$40.2_{2.0}$	$40.8_{2.2}$	$44.5_{1.5}$	$45.0_{1.7}$	$45.3_{1.8}$	$47.2_{1.4}$	
5	$77.3_{0.3}$	$77.6_{0.3}$	77.50.2	$77.9_{0.2}$	$78.0_{0.2}$	$78.1_{0.1}$	$72.6_{0.8}$	$72.0_{0.9}$	$73.8_{0.8}$	$74.7_{0.7}$	$74.4_{0.6}$	$74.2_{0.8}$	$40.3_{2.0}$	$41.2_{2.3}$	$43.9_{1.9}$	$45.3_{1.7}$	$45.5_{1.7}$	$47.5_{1.4}$	
6	$77.3_{0.3}$	$77.6_{0.1}$	$77.5_{0.2}$	$177.9_{0.1}$	$78.0_{0.2}$	$78.1_{0.1}$	$72.6_{0.8}$	$72.0_{0.9}$	$74.2_{0.5}$	$74.7_{0.7}$	$74.4_{0.5}$	$74.2_{0.7}$	$40.3_{2.0}$	$41.2_{2.3}$	$43.9_{1.9}$	$45.7_{1.4}$	$45.9_{1.4}$	$47.9_{1.2}$	
7	$77.3_{0.3}$	$77.6_{0.1}$	$77.5_{0.2}$	$77.9_{0.2}$	$78.1_{0.2}$	$78.2_{0.2}$	$72.3_{0.9}$	$71.7_{0.7}$	$74.3_{0.3}$	74.60 7	74.30 6	74.20.5	$40.0_{2.1}$	$40.6_{2.3}$	$44.1_{2.0}$	$46.0_{1.3}$	$46.1_{1.3}$	48.11.1	

 $8\ 77.3_{0.3}\ 77.6_{0.2}\ 77.5_{0.2}\ \textbf{78.0_{0.2}78.2_{0.1}78.3_{0.2}}\ 72.1_{0.9}\ 71.7_{0.7}\ 74.2_{0.5}\ 74.6_{0.7}\ 74.3_{0.5}\ 74.3_{0.5}\ 40.0_{2.1}\ 40.6_{2.3}\ 44.6_{1.7}\ 46.0_{1.1}\ 46.1_{1.2}\ 48.2_{1.0}\ 9\ 77.4_{0.2}\ 77.6_{0.2}\$

- ▶ Again: 61 runs over large task-agnostic grid of 21 pairs of learning rates and batch sizes, each for 3 seeds
- Now: Cumulatively sample 1,..., 10 runs with disjoint tuples of learning rate and batch size $(10\times)$ and
- Max. SRC-DEV: pick best individual model on SRC-DEV for model variant LAST, SRC-DEV, CA Cumulatively average all available LAST, SRC-DEV, CA model variants without SRC-DEV

	NLI						TyDiQA-GoldP						NER						
	Max. SRC-DEV Cum			Cumul	Cumulative Averaging			Max. SRC-DEV			Cumulative Averaging			Max. SRC-DEV			Cumulative Averaging		
r	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	
1	$76.5_{0.6}$	$76.5_{0.8}$	77.30.4	$76.5_{0.6}$	$76.5_{0.8}$	$77.3_{0.4}$	$71.9_{0.4}$	$71.9_{0.7}$	$73.6_{1.9}$	$71.9_{0.4}$	$71.9_{0.7}$	$73.6_{1.9}$	$40.8_{\scriptstyle 2.7}$	41.1 _{3.1}	$44.6_{2.1}$	$40.8_{2.7}$	$41.1_{3.0}$	$44.6_{2.1}$	
2	$77.2_{0.3}$	$77.5_{0.4}$	$77.6_{0.2}$	$77.6_{0.3}$	$77.8_{0.4}$	$78.0_{0.2}$	$71.9_{0.6}$	$71.6_{0.6}$	$73.3_{2.0}$	$73.4_{1.2}$	$73.3_{1.1}$	$72.9_{2.8}$	$39.3_{2.1}$	$39.3_{2.1}$	$43.5_{1.1}$	$43.2_{2.2}$	$43.2_{2.2}$	$45.6_{1.5}$	
3	$77.2_{0.3}$	$77.5_{0.4}$	$77.6_{0.2}$	$77.8_{0.3}$	$77.9_{0.4}$	$78.1_{0.2}$	$72.1_{0.8}$	$71.8_{0.8}$	$74.1_{1.0}$	$74.1_{0.7}$	$74.2_{0.7}$	$73.8_{1.2}$	$39.3_{1.2}$	$39.5_{1.7}$	$44.0_{1.1}$	$45.0_{1.7}$	$45.1_{1.8}$	$47.3_{1.3}$	
4	$77.2_{0.4}$	$77.5_{0.4}$	$77.5_{0.2}$	$77.7_{0.3}$	$77.9_{0.4}$	$78.1_{0.3}$	$72.5_{0.8}$	$72.0_{0.9}$	$73.9_{0.6}$	$74.5_{0.6}$	$74.1_{0.4}$	$74.1_{0.9}$	$40.2_{2.0}$	$40.8_{2.2}$	$44.5_{1.5}$	$45.0_{1.7}$	$45.3_{1.8}$	$47.2_{1.4}$	
5	$77.3_{0.3}$	$77.6_{0.3}$	3 77.5 _{0.2}	$77.9_{0.2}$	$78.0_{0.2}$	$78.1_{0.1}$	$72.6_{0.8}$	$72.0_{0.9}$	$73.8_{0.8}$	$74.7_{0.7}$	$74.4_{0.6}$	$74.2_{0.8}$	$40.3_{2.0}$	$41.2_{2.3}$	$43.9_{1.9}$	$45.3_{1.7}$	$45.5_{1.7}$	$47.5_{1.4}$	
6	$77.3_{0.3}$	$77.6_{0.1}$	$77.5_{0.2}$	$77.9_{0.1}$	$78.0_{0.2}$	$78.1_{0.1}$	$72.6_{0.8}$	$72.0_{0.9}$	$74.2_{0.5}$	$74.7_{0.7}$	$74.4_{0.5}$	$74.2_{0.7}$	$40.3_{2.0}$	$41.2_{2.3}$	$43.9_{1.9}$	$45.7_{1.4}$	$45.9_{1.4}$	$47.9_{1.2}$	
7	$77.3_{0.3}$	$77.6_{0.1}$	$77.5_{0.2}$	$77.9_{0.2}$	$78.1_{0.2}$	$78.2_{0.2}$	$72.3_{0.9}$	$71.7_{0.7}$	$74.3_{0.3}$	$74.6_{0.7}$	$74.3_{0.6}$	$74.2_{0.5}$	$40.0_{2.1}$	$40.6_{2.3}$	$44.1_{2.0}$	$46.0_{1.3}$	$46.1_{1.3}$	$48.1_{1.1}$	
8	$77.3_{0.3}$	$77.6_{0.2}$	$77.5_{0.2}$	$78.0_{0.2}$	$78.2_{0.1}$	$78.3_{0.2}$	$72.1_{0.9}$	$71.7_{0.7}$	$74.2_{0.5}$	$74.6_{0.7}$	$74.3_{0.5}$	$74.3_{0.5}$	$40.0_{2.1}$	$40.6_{2.3}$	$44.6_{1.7}$	$46.0_{1.1}$	$46.1_{1.2}$	$48.2_{1.0}$	
9	$77.4_{0.2}$	77.60.2	$77.6_{0.2}$	$78.0_{0.1}$	$78.1_{0.1}$	$78.3_{0.2}$	$72.0_{1.1}$	$71.7_{0.7}$	$74.2_{0.5}$	$74.6_{0.5}$	$74.4_{0.4}$	$74.2_{0.4}$	$39.6_{2.3}$	$39.9_{2.4}$	$44.3_{1.8}$	$46.0_{0.6}$	$46.1_{0.7}$	$48.3_{0.7}$	
10	77.30.2	77.60.2	77.60.2	$78.0_{0.1}$	$78.2_{0.1}$	$78.3_{0.1}$	$72.0_{1.1}$	71.70.7	$74.2_{0.5}$	$74.6_{0.6}$	74.40.4	$74.2_{0.6}$	39.62.3	$39.9_{2.4}$	44.41.7	46.10.5	46.20.6	$48.4_{0.1}$	

- ▶ Again: 61 runs over large task-agnostic grid of 21 pairs of learning rates and batch sizes, each for 3 seeds
- Now: Cumulatively sample 1,..., 10 runs with disjoint tuples of learning rate and batch size (10×) and
- ► Green denotes on par (light) or better (strong) performance than best max. SRC-DEV (L, S-DEV, CA)
- lacktriangle Cumulative averaging typically achieves better performance from first averaged-in run (r=2) at lower σ

	NLI						TyDiQA-GoldP						NER						
	Max. SRC-DEV			Cumulative Averaging			Ma	Max. SRC-DEV			Cumulative Averaging			Max. SRC-DEV			Cumulative Averaging		
r	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	LAST	S-DEV	CA	
1	$76.5_{0.6}$	$76.5_{0.8}$	$77.3_{0.4}$	$76.5_{0.6}$	$76.5_{0.8}$	$77.3_{0.4}$	$71.9_{0.4}$	$71.9_{0.7}$	$73.6_{1.9}$	$71.9_{0.4}$	$71.9_{0.7}$	$73.6_{1.9}$	$40.8_{2.7}$	$41.1_{3.1}$	$44.6_{2.1}$	$40.8_{2.7}$	$41.1_{3.0}$	$44.6_{2.1}$	
2	$77.2_{0.3}$	$77.5_{0.4}$	$77.6_{0.2}$	$77.6_{0.3}$	$77.8_{0.4}$	$78.0_{0.2}$	$71.9_{0.6}$	$71.6_{0.6}$	$73.3_{2.0}$	$73.4_{1.2}$	$73.3_{1.1}$	$72.9_{2.8}$	$39.3_{2.1}$	$39.3_{2.1}$	$43.5_{1.1}$	$43.2_{2.2}$	$43.2_{2.2}$	$45.6_{1.5}$	
3	$77.2_{0.3}$	$77.5_{0.4}$	$77.6_{0.2}$	$77.8_{0.3}$	$77.9_{0.4}$	$78.1_{0.2}$	$72.1_{0.8}$	$71.8_{0.8}$	$74.1_{1.0}$	$74.1_{0.7}$	$74.2_{0.7}$	$73.8_{1.2}$	$39.3_{1.2}$	$39.5_{1.7}$	$44.0_{1.1}$	$45.0_{1.7}$	$45.1_{1.8}$	$47.3_{1.3}$	
4	$77.2_{0.4}$	$77.5_{0.4}$	$77.5_{0.2}$	$77.7_{0.3}$	$77.9_{0.4}$	$78.1_{0.3}$	$72.5_{0.8}$	$72.0_{0.9}$	$73.9_{0.6}$	$74.5_{0.6}$	$74.1_{0.4}$	$74.1_{0.9}$	$40.2_{2.0}$	$40.8_{2.2}$	$44.5_{1.5}$	$45.0_{1.7}$	$45.3_{1.8}$	$47.2_{1.4}$	
5	$77.3_{0.3}$	$77.6_{0.3}$	$77.5_{0.2}$	$77.9_{0.2}$	$78.0_{0.2}$	$78.1_{0.1}$	$72.6_{0.8}$	$72.0_{0.9}$	$73.8_{0.8}$	$74.7_{0.7}$	$74.4_{0.6}$	$74.2_{0.8}$	$40.3_{2.0}$	$41.2_{2.3}$	$43.9_{1.9}$	$45.3_{1.7}$	$45.5_{1.7}$	$47.5_{1.4}$	
6	$77.3_{0.3}$	$77.6_{0.1}$	$77.5_{0.2}$	$77.9_{0.1}$	$78.0_{0.2}$	$78.1_{0.1}$	$72.6_{0.8}$	$72.0_{0.9}$	$74.2_{0.5}$	$74.7_{0.7}$	$74.4_{0.5}$	$74.2_{0.7}$	$40.3_{2.0}$	$41.2_{2.3}$	$43.9_{1.9}$	$45.7_{1.4}$	$45.9_{1.4}$	$47.9_{1.2}$	
7	$77.3_{0.3}$	$77.6_{0.1}$	$77.5_{0.2}$	$77.9_{0.2}$	$78.1_{0.2}$	$78.2_{0.2}$	$72.3_{0.9}$	$71.7_{0.7}$	$74.3_{0.3}$	$74.6_{0.7}$	$74.3_{0.6}$	$74.2_{0.5}$	$40.0_{2.1}$	$40.6_{2.3}$	$44.1_{2.0}$	$46.0_{1.3}$	$46.1_{1.3}$	$48.1_{1.1}$	
8	$77.3_{0.3}$	$77.6_{0.2}$	$77.5_{0.2}$	$\mathbf{78.0_{0.2}}$	$78.2_{0.1}$	$78.3_{0.2}$	$72.1_{0.9}$	$71.7_{0.7}$	$74.2_{0.5}$	$74.6_{0.7}$	$74.3_{0.5}$	$74.3_{0.5}$	$40.0_{2.1}$	$40.6_{2.3}$	$44.6_{1.7}$	$46.0_{1.1}$	$46.1_{1.2}$	$48.2_{1.0}$	
9	$77.4_{0.2}$	$77.6_{0.2}$	$77.6_{0.2}$	$78.0_{0.1}$	$78.1_{0.1}$	$78.3_{0.2}$	$72.0_{1.1}$	$71.7_{0.7}$	$74.2_{0.5}$	$74.6_{0.5}$	$74.4_{0.4}$	$74.2_{0.4}$	$39.6_{2.3}$	$39.9_{2.4}$	$44.3_{1.8}$	$46.0_{0.6}$	$46.1_{0.7}$	$48.3_{0.7}$	
10	$77.3_{0.2}$	$77.6_{0.2}$	$77.6_{0.2}$	$78.0_{0.1}$	$78.2_{0.1}$	$78.3_{0.1}$	$72.0_{1.1}$	$71.7_{0.7}$	$74.2_{0.5}$	$74.6_{0.6}$	$74.4_{0.4}$	$74.2_{0.6}$	$39.6_{2.3}$	$39.9_{2.4}$	$44.4_{1.7}$	$46.1_{0.5}$	$46.2_{0.6}$	$48.4_{0.5}$	

Cumulative Avg. aligns with 'ideal' (TRG-DEV) ZS-XLT

		N	LI		T	yDiQ	4-Gol	dP	NER				
	Max.	DEV	Cum. Avg.		Max. Dev		Cum. Avg.		Max.	DEV	Cum. Avg		
		TRG				TRG				TRG			
r		_		SOUP									
				76.8									
				77.6									
5	77.6	77.9	78.1	77.6	72.0	73.4	74.2	74.3	41.2	49.7	47.5	42.8	
7	77.6	78.2	78.2	77.8	71.7	73.7	74.2	73.9	40.6	49.9	48.1	42.8	
10	77.6	78.4	78.3	77.7	71.7	73.9	74.2	73.8	39.9	49.9	48.4	42.8	

- Repeat prior analysis now with TRG-DEV and SOUP
- ► SOUP averages top-k SRC-DEV checkpoints), but plateaus like max. SRC-DEV (albeit at higher levels)

Cumulative Avg. aligns with 'ideal' (TRG-DEV) ZS-XLT

		N	LI		T	yDiQ	A- Gol	dP	NER				
	Max.	DEV	Cum. Avg.		Max. Dev		Cum. Avg.		Max.	DEV	Cum. Avg.		
	SRC	TRG			SRC	TRG			SRC	TRG			
r	DEV	DEV	CA	SOUP	DEV	DEV	CA	SOUP	DEV	DEV	CA	SOUP	
1				76.8									
3	77.5	77.7	78.1	77.6	71.8	73.5	73.8	73.8	39.5	49.2	47.3	42.1	
5	77.6	77.9	78.1	77.6	72.0	73.4	74.2	74.3	41.2	49.7	47.5	42.8	
7	77.6	78.2	78.2	77.8	71.7	73.7	74.2	73.9	40.6	49.9	48.1	42.8	
10	77.6	78.4	78.3	77.7	71.7	73.9	74.2	73.8	39.9	49.9	48.4	42.8	

- Repeat prior analysis now with TRG-DEV and SOUP
- ▶ SOUP averages top-k SRC-DEV checkpoints), but plateaus like max. SRC-DEV (albeit at higher levels)
 - Key: naively cumulative averaging without monitoring SRC-DEV

Cumulative Averaging

- 1. irons out bad runs
- 2. ingests strong runs (cf. TRG-DEV)
- 3. does not plateau in suboptimal SRC-DEV

'Free Lunch' and 'One For All' Retrospective Simplicity over Complexity (2/2)

Idea Origination:

- ➤ Complex ideas around multi-lingual FS-XLT itched me the wrong way (gradient vaccination)
- ▶ 'Model soups' (complex variant of run averaging) worked well in vision, and, turns out, checkpoint avg. very common for machine translation
- Run averaging did not work in 'model soups': heads were aligned for CV (same induction) but not for text classification

Does it work in practice?

- ► Checkpoint averaging effects diminish for higher-resource FS-XLT setups (transfer becomes more 'monolingual')
 - translate-train would arguably be interesting to see
- ► (Cumulative) Run Averaging Defensive Strategy That Gives You with very high likelihood best XLT performance (at same inference speed)

Universal Take-Aways Irrespective of Cross-Lingual Transfer Evaluation

- ► Fairness in evaluation critically important for fundamental progress
- Simple methods can work just as well as more involved approaches
 - ▶ Model 'averaging' or 'ensembles' in various forms (RA, MoE) are very strong baselines if you are already tuning hyperparameters
- ▶ We should strive for more transparent and realistic experimental setups
 - ▶ Modern tooling (wandb) simplifies reporting results under various considerations

Thank You For Your Attention!

Further Results

Benefits Task-Dependent (-Agnostic) for ZS-XLT (FS-XLT)

- Weight Averaging Consistently On Par Or Better Than Baselines
 - Magnitude of Benefits Depend on No. of Shots and Task
- Run-Averaging Curriculum Outperforms Hyperparameter Tuning

Model Averaging Makes ZS-XLT More Robust

(B) To Varying Hyperparameters

